
 

 

Adaptive Tetrahedral Grid Refinement and 
Coarsening in Message-Passing Environments 
 
Jackie P. Hallberg1 
Alan K. Stagg2 
Joseph H. Schmidt3 
 
1 Engineer Research and Development Center 
Coastal and Hydraulic Laboratory 
3909 Halls Ferry Road 
Vicksburg, MS  39180 
pettway@juanita.wes.army.mil 
 
2 Los Alamos National Laboratory 
Applied Physics Division 
P.O. Box 1663, MS F645 
Los Alamos, NM  87545 
stagg@lanl.gov 
 
3 2420 Wanda Way 
Reston, VA  20191 
roig.and.schmidt@erols.com 
 
 
Abstract 
 
A grid refinement and coarsening scheme has been developed for tetrahedral 
and triangular grid-based calculations in message-passing environments.  The 
element adaption scheme is based on an edge bisection of elements marked for 
refinement by an appropriate error indicator.  Hash-table/linked-list data 
structures are used to store nodal and element information.  The grid along inter-
processor boundaries is refined and coarsened consistently with the update of 
these data structures via MPI calls.  The parallel adaption scheme has been 
applied to the solution of a transient, three-dimensional, nonlinear, groundwater 
flow problem.  Timings indicate efficiency of the grid refinement process 
relative to the flow solver calculations. 
 
Introduction 
 
Adaptive grid methods based on point insertion and removal have been popular 
for a number of years for achieving greater solution accuracy with relative cost 
efficiency.  This approach is used to resolve dynamic and fine-grid scale 



 

 

phenomena.  The advantage is that fine-scale flow features can be captured 
without uniformly gridding the domain with a costly, fine grid.  However, issues 
related to implementing such schemes on parallel systems have only recently 
been addressed, and much work is needed to identify the best approaches. 
 
We present our work in this area with application to finite element modeling in 
message-passing environments.  Our grid refinement strategy based on point 
insertion has been described elsewhere [1].  In this paper we extend this 
refinement capability to enable local grid coarsening and describe this efficient 
approach for irregular tetrahedral and triangular grids.  Data structures have 
been selected to simplify implementation and coding complexity as much as 
possible for refinement, coarsening, and load balancing components.   This 
software is being utilized in the Department of Defense code ADH (Adaptive 
Hydrology) developed at the U.S. Army Engineer Research and Development 
Center.  ADH is a modular, parallel, finite element code designed to simulate 
flow in groundwater and two- and three-dimensional surface water [2]. 
 
Serial Element Adaption Scheme 
 
Given an initial grid, the model subdivides grid elements according to an 
explicit error indicator to achieve the desired resolution in regions of need.  
Elements can be merged to increase efficiency where increased resolution is no 
longer required.  This process is illustrated in Figure 1, where a new node is 
added to an edge, creating two new tetrahedra.  The new elements may be 
merged to recover the original element by removing the inserted node. 
 
The parallel grid adaption scheme developed here is based on the serial, 
geometric, edge-splitting algorithm of Liu and Joe [3].  Element edges are 
selected for subdivision based on a modified longest-edge bisection approach in 
which the oldest edge is flagged for bisection.  Here the age of an edge indicates 
the level of refinement during which the edge was created.  If the edges have the 
same age (as would be the case for the initial unrefined grid), then the longest 
edge is flagged for bisection.  A grid closure step involving additional edge 
bisection is used to eliminate hanging nodes generated during the refinement 
step.  This generation of a conforming grid is required before the coarsening 
phase can begin. 
 



 

 

 
Figure 1. Tetrahedral Grid Adaption Based on Edge Bisection 

 
The first step in the coarsening phase is to mark elements as potential candidates 
to be coarsened according to an appropriate error indicator.  Some of these 
elements may not be allowed to merge with neighbor elements, depending on 
the error associated with the neighbor elements.  Also, a refined grid can be 
coarsened only to the extent of the original grid.  In other words, an unrefined or 
original element cannot be merged with another element.   
 
In this adaption scheme, the coarsening process occurs precisely in reverse order 
of the refinement process at the element level.  That is, the new node created on 
an edge during element refinement is the same node removed to merge the two 
elements during coarsening.  To identify the last node added within an element, 
element node levels are maintained during the refinement process.  Higher node 
levels indicate newer nodes.  For two elements to merge and restore the parent 
element, nodal data for the nodes adjacent to the one being removed is required.    
This node-adjacency information is set during refinement by storing the nodes 
of the edge being split.  When two elements agree to merge and remove the 
newest node, then the node-adjacency information for that node is retrieved, and 
the first of the merging elements to be processed restores the parent element. 
The following pseudo-code describes the basic element refinement and 
coarsening scheme. 
 
Grid adaption pseudo-code 
 
loop over elements 
 refine element via edge bisection if its error > tolerance 
conforming_grid = false 
do while conforming_grid == false { 
 conforming_grid = true 
 loop over elements 
  if element has an edge with a newly inserted node{ 
   refine element 



 

 

   conforming_grid = false 
 } 

} 
initialize node removal flags to YES 
loop over elements 

set node removal flags to NO for old node and for all element nodes if  
error is high 

loop over elements 
 if any nodes are flagged to be removed, then merge the elements 
 
Parallel Implementation of Element Adaption Scheme 
 
Parallel implementation of local grid refinement schemes, like the edge 
bisection scheme above, presents a number of challenges.  First, in the standard 
approach where the grid is partitioned and geographic subregions are assigned to 
processors, these subregions must be refined and coarsened consistently along 
processor boundaries.  Also, closure requirements may force refinement to 
spread to a processor that has no elements marked for refinement by the error 
indicator.  Finally, the local adaption process will likely lead to load imbalance 
among the processors, and nodes and elements must be transferred among 
processors during dynamic load balancing so that processing efficiency is 
maintained. 
 
In our approach grid partitioning is accomplished by assigning element nodes 
uniquely to processors.  Processors owning the element nodes share elements 
along processor boundaries.  Nodal information for these elements is 
communicated among processors using MPI, and each processor stores complete 
data for its shared elements [4].  The ability of the code to run on several parallel 
platforms and maintain portability was a major concern during development. 
 
Data Structures 
 
Data structures were selected to simplify the parallel implementation of the 
adaption scheme and to facilitate the coupling of the refinement, coarsening, and 
load balancing components.  During early work, we realized that common 
techniques like the use of tree structures for refinement could adversely impact 
other adaption components such as load balancing.  In this case, the use of graph 
partitioners and the resulting grid point movement between processors requires 
splitting refinement trees between processors.  To avoid the difficulties 
associated with splitting trees between processors and subsequent grid 
coarsening, we chose to use hash-table/linked-list structures [5].  Such structures 
are naturally suited for grid adaption since they are dynamic in nature and 
facilitate node and element searches.  These structures handle all grid 



 

 

refinement, coarsening, and load balancing needs without complicating the 
implementation of any single component. 
 
Hash tables are used to store nodes and element edges.  Each entry in the node 
hash table consists of a local node number relative to the owning processor and 
corresponding node identifier in the global grid.  Each entry in the edge hash 
table consists of the two local node numbers that define the edge, an integer 
edge rank based on comparative lengths of the edges, and an integer that stores 
the new node number if a node is inserted on the edge.  Prior to refinement, the 
node and edge hash tables are allocated and filled; this memory is freed once the 
refinement process, including closure, is complete.  Similarly, the element hash 
tables are allocated and filled, and this memory is freed once the coarsening 
process is complete.  The nodes and elements are renumbered after each 
refinement and coarsening phase, and load balancing is performed after a 
complete adaption cycle (refinement, closure, renumbering, coarsening, and 
renumbering) as necessary. 
 
Grid Consistency among Processors 
 
The grid refinement scheme presented here is primarily a local process and thus 
is amenable to parallel processing.  The principal requirement in a parallel 
environment is that processors periodically communicate to maintain grid 
consistency along the inter-processor boundaries.  In the serial case, the new 
node number on the edge is stored in the edge hash table, and the adjacent 
element checks for the presence of a new node in the hash table to see if 
refinement for closure is required.  In our parallel approach, an edge that spans 
two processors will appear in each of these processors' hash tables, and a 
protocol must be established to maintain consistency of the edge hash tables 
between processors.  To support this communication, edge communication lists 
are constructed which provide a mapping between these duplicated edge storage 
locations.  For each such edge, one of the processors sharing the edge is 
assigned ownership of it. 
 
An example is illustrated in Figure 2 where three elements are distributed over 
two processors as indicated by the shaded background.  The two processors 
share the center and right elements.  In the first step, processor P0 splits the left 
element because of high error.   Next P0 splits the original center element in the 
closure phase because that element now has a new node on one of its edges.  
Note that the center element's longest edge is bisected rather than the edge with 
the new node.  Following this second step, P0 communicates the new node 
number on the shared edge to P1 using the edge communication lists.  This 
communication provides the necessary data for P1 to refine its copies of the 
center and right elements so that the shared grid region is identical on both 



 

 

processors.  In this example grid refinement has spread from P0 to P1 even 
though P1 did not have any elements marked for refinement by the error 
indicator. 
 

 
 

Figure 2. Edge Bisected by Owning Processor 
 
Edge Ranking 
 
After constructing the edge communication lists, edges are ranked based on their 
length so that they are uniquely and consistently identified throughout the global 
grid for the refinement phase.  Integer rankings are utilized rather than using 
computed edge lengths so that processors are easily able to make consistent edge 
bisection decisions when multiple edges in an element are the same length. 
 
Following a parallel, odd-even transposition sort, global ranks are returned to 
processors owning the edges, and these processors then store the ranks in their 
edge hash tables.  These processors then communicate the ranks to the 
processors sharing the edges using the edge communication lists that have been 
constructed.  The receiving processors finally store the ranks in their edge hash 
tables. 
 
Element Refinement 
 
After elements have been selected for refinement based on the error indicator, 
edges are selected for bisection based on their age and rank within the element.  
To refine an element, the oldest edge (or longest edge in a tie) in the element is 
bisected.  To determine if another processor has already bisected the edge, the 
new node entry in the edge structure is inspected for that edge.  If the edge has 
not been bisected, a new node is created for the edge, and the hash table is 
adjusted locally.  Two new elements are created with the bisection of an edge, 
and the element Jacobians and other data are established for these new elements.  



 

 

The new node entries for the edges in these new elements are reinitialized to 
indicate that new nodes are not present. 
 
Closure 
 
 After elements have been refined based on the error indicator, further 
refinement might be required to obtain a closed grid (no hanging nodes).  In the 
serial case, each element is checked for edges with new nodes via the edge hash 
table.  If any element has an edge with a new node, that element is marked for 
refinement according to the established rules.  The refinement process continues 
iteratively until a closed grid is obtained. 
 
In a parallel environment this procedure is complicated by the fact that shared 
edges may be bisected by only one of the processors spanned by the edge.  To 
maintain consistency of the edge hash tables, processors owning shared edges 
communicate new node information to processors sharing the edges.  If a 
message indicates that an edge has a new node, then the receiving processor 
creates a new node for the edge and updates its hash table.  Similarly, processors 
may bisect edges they do not own.  To handle this situation, the edge 
communication lists are utilized in reverse order (the send list becomes a receive 
list, and vice versa) so that processors owning edges that are shared can update 
their hash tables if other processors bisect them.  After this communication, the 
elements with new nodes on edges are refined, and the process is repeated until 
the grid is closed.         

 
Parallel Coarsening 
 
The parallel coarsening process begins with the communication of node removal 
flags (set by the error indicator) across processor boundaries.  Node adjacency 
data is also communicated to allow for proper merging of elements across these 
boundaries.  With this information each processor is able to merge its marked 
elements concurrently and independently.  Each new, merged element is created 
only once using hash table lookups to avoid duplicate element creation. 
 
Following element merging, the node levels for the elements created along the 
inter-processor boundaries must be updated to enable further coarsening of these 
elements if needed later.  These node levels are obtained as follows.  During the 
merging process, new elements created along the inter-processor boundaries are 
marked for outgoing node-level communication by storing their numbers in 
linked lists according to the identification numbers of the receiving processors.  
At this point, processors have only determined the destinations and message 
sizes for outbound messages, and the number of inbound messages is unknown.  
Global communication of the destination processor numbers is utilized so that 



 

 

each processor can calculate the number of messages it will receive.  Each 
processor then sends its messages and probes for each incoming message to 
obtain the sending processor identification number and message size.  With this 
information each processor is able to receive each inbound message and then set 
the element node levels for the new inter-processor boundary elements. 
 
Cleanup 
 
Following node level communication, the remaining steps in the coarsening 
process involve bookkeeping updates for the new grid.  First, adjacent node data 
is set for the new grid, and unused nodes and elements are re-initialized.  The 
nodes and elements are renumbered so that unused items are placed at the end of 
the lists in memory.  Given the new grid numbering, the communication lists for 
exchanges between processors are updated.  Finally, the global node identifiers 
and adjacent node data are updated using the new communication lists.  At this 
point, the grid is ready for subsequent refinement and coarsening.  Also, the grid 
may be repartitioned dynamically among the processors if desired.                      
 
Groundwater Application 
 
The capabilities of the parallel grid refinement scheme have been investigated 
for the solution of a draining heterogeneous column.  In this problem a column 
is filled with a mixture of clay, silt, and sand.  The column consist primarily of 
sand with a clay lens near the bottom and silt lenses in several places throughout 
the column.  Initially, the column is completely saturated with water, and then 
the water is allowed to drain from the bottom of the column.  The grid is 
allowed to refine and coarsen locally as dictated by the explicit error indicator, 
and dynamic load balancing is used to improve processor efficiency. 
 
A snapshot of the adaptively refined grid for the heterogeneous column is 
illustrated in Figure 3.  The area shaded black represents the clay material, while 
the sand and silt are represented by the gray and white regions, respectively.  
Grid refinement is visible at the sand/silt interface in the lowest points of the 
sand.  Water travels through the sand at a faster rate than through the silt and 
large pressure gradients will develop at the material interface.  The refinement 
shows the points of local flow concentration. 

 
Preliminary timings for the heterogeneous column described above were 
obtained on 1-8 processors of a Silicon Graphics Origin 2000.  During the 
refinement step, the number of nodes was increased by 35%, and the total time 
spent in grid refinement was an order of magnitude less than the time spent in 
the flow solver.  The time spent in grid closure, including communication, was 
less than half of the total time in grid refinement for these cases.  Though 



 

 

preliminary, these timings indicate efficiency of the grid refinement process 
relative to the flow solver. 
 

 
 

Figure 3. Adaptively Refined Grid for Heterogeneous Column 
 
Conclusion 
 
A parallel refinement scheme has been developed for tetrahedral and triangular 
grids.  The refinement scheme and data structures described here have been 
developed to facilitate the parallel implementation of both grid refinement and 
coarsening.  The refinement and coarsening schemes are based on 
communicating a minimum set of data and reconstructing information locally 
without the use of tree structures.  The goal with this approach is a balanced 
design between refinement, coarsening, and load balancing in terms of 
efficiency and ease of implementation.  Preliminary application of the adaptive 
grid scheme to an unsteady groundwater flow problem has demonstrated the 
capability and efficiency of the method. 
 
 



 

 

Acknowledgment 
 
Funding for this project was provided by the Department of Defense High 
Performance Computing Modernization Office.  Permission to publish this paper 
was granted by the Chief of Engineers and by Los Alamos National Laboratory.   
 
 
References 
 
[1] Stagg, A.K., Hallberg, J.P., and Schmidt, J.H., “A Parallel, Adaptive 

Refinement Scheme for Tetrahedral and Triangular Grids”, International 
Parallel and Distributed Processing Symposium Workshop Proceedings, 
Springer-Verlag Lecture Notes in Computer Science, Cancun, Mexico, May 
2000. 

[2] Jenkins, E.W., Berger, R.C., Hallberg, J.P., Howington, S.E., Kelley, C.T., 
Schmidt, J.H., Stagg, A.K., and Tocci, M.D., “Newton-Krylov-Scharz 
Methods for Richards’ Equation”, submitted to the SIAM Journal on 
Scientific Computing, October 1999.  

[3] Liu, A. and Joe, B., “Quality Local Refinement of Tetrahedral Meshes 
Based on Bisection”, SIAM Journal on Scientific Computing, vol. 16, no. 6, 
pp. 269-1291, November 1995. 

[4] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI-
The Complete Reference, Volume 1, The MPI Core, The MIT Press, 
Cambridge, Massachusetts, 1998. 

[5] Cormen, T., Leiserson, C., and Rivest, R., Introduction to Algorithms, The 
MIT Press, Cambridge, Massachusetts, 1990. 


